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1 Introduction

This report gives the full details of the PaGE 5.1 algorithm. For the PaGE 5.1
perl implementation user guide please see this document.

http://www.cbil.upenn.edu/PaGE/doc/perl/PaGE 5.1 documentation.html

PaGE is a tool for analyzing microarray gene expression data. It can be used to
find differentially expressed genes between two conditions, and to generate pat-
terns across several conditions. PaGE was originally introduced by Manduchi et
al. (1999), and though the algorithm has changed significantly, the general ap-
proach of generating discrete patterns using an FDR based confidence measure
has remained unchanged.

2 Differential Expression

We assume that there are two well defined experimental conditions, and that
each gene has a measurable expression intensity that follows some (unknown)
distribution in each condition. Differential expression of a gene means that
these distributions are different between the two conditions. The distributions
can differ in every possible way, but the statistics we use are designed to exploit
primarily a difference in the means (e.g. the t-statistic). Even so, the hypotheses
being tested are of equality of distributions. This is a necessary consequence of
using the permutation methods that we do.

The data are assumed to consist of multiple quantified microarray experi-
ments in each condition. What can be concluded from any differential expres-
sion analysis depends on how well the data represent random samples from the
conditions of interest.

We begin by considering just two experimental conditions, called condition 0
and condition 1. Condition 0 will be referred to as the reference condition. Up-
regulation of a gene will mean the gene’s mean intensity is higher in condition
1 as compared to condition 0, and down-regulation will mean the gene’s mean
intensity is lower in condition 1 versus condition 0.

3 Study Design

There are three ways to compare two conditions using microarrays. The most
straightforward is to use 1-channel1 arrays and to hybridize some number of
replicate arrays for each condition. This gives a number of intensities for each
gene, in each condition.

A second strategy, known as the reference design, uses 2-channel data, where
the experimental conditions are hybridized in one channel and a common ref-
erence is hybridized to the other channel. This common reference is identical
for all arrays. In this case the data consist of ratios (or log ratios), where the

1We consider Affymetrix arrays as 1-channel
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denominator is always the gene’s intensity in the reference sample, and the nu-
merator is one or the other experimental condition. In all of the above cases we
shall refer to the design as a 2-sample design, because it produces two sets of
intensities for each row, corresponding to the two conditions.

The third possibility is the direct comparison design. 2-channel arrays are
used, with condition 0 being hybridized to one channel and condition 1 hy-
bridized to the other. Since we do not separate the channels, but instead work
directly with the ratios, this requires an analysis which is somewhat different
from the 1-channel or reference design.

A 2-sample design can also be “paired”. Suppose for example that two
anatomical regions are compared in each of m animals. It might be that the
expression of gene G in the first region is always twice as high as the expression in
the second, but the exact values depend strongly on the animal. In this case it is
often better to run a paired analysis. This approach considers the data as ratios
of paired experiments (or differences if the data are log transformed), analagous
to the direct comparison design in which the experiments are naturally paired.
Therefore this can increase the power of the results if there is a strong effect in
the data. If there is not a strong paired effect, then it will likely decrease the
power to run a paired analysis. These cases are discussed in detail in Section
10.

4 The Data

Suppose first that we have 1-channel data, or 2-channel reference design data.
We essentially forget, for the moment, that we are dealing with ratios in the
case of a reference design, and proceed with the same analysis for both cases.
In the case of Affymetrix data we assume the probe set intensities have been
turned into summary values by some method.2 So the data in these cases consist
of some number m of replicates arrays in the group 0 and some number n of
replicates in group 1. Suppose there are g rows of data. We put the data in a
matrix as in (1) below.

C1 C2 · · · Cm D1 D2 · · · Dn

G1 c11 c12 · · · c1m d11 d12 · · · d1n

G2 c21 c22 · · · c2m d21 d22 · · · d2n

G3 c31 c32 · · · c3m d31 d32 · · · d3n

...
...

...
...

...
...

...
Gg cg1 cg2 · · · cgm dg1 dg2 · · · dgn

(1)

The columns in (1) correspond to arrays and rows correspond to genes. The
columns labelled with the Ci’s correspond to arrays from condition 0, and the
columns labelled with the Di’s correspond to the arrays from condition 1.

We denote a row of the data matrix by r. If p is a permutation of the
columns (see next section), we denote the correspondingly permuted row by rp.

2e.g. MAS 5.0 (Affymetrix (2003)), RMA (Irizarry et al. (2003)), Probe Profiler (Corimbia
Inc.), etc.
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5 Permutations

In the two-sample case where the data are in the form of the data matrix (1),
a permutation is any rearrangement of the m + n columns. This can also be
thought of as choosing some number k of columns from group 0, and then
choosing the same number of columns from group 1, and switching them. We
then obtain two new groups of columns from the first m and the last n columns
of the permuted data matrix. What is important in a permutation is which
columns end up in which group, and not the order that they happen to be listed
in left to right. Therefore there are a total of

(
m+n

n

)
possible permutations in

the two-sample case.
In the case of a direct comparison design, where each row of data consists of

a set of n ratios, a permutation consists of taking k of the columns, for some k,
and and taking the reciprocals of those k elements in each row.3 The set of all
permutations consists of doing this for all possible subsets of k columns, for all
k ≤ n. So for example if a row is (x1, x2, x3, x4, x5) and k = 3 with columns 1, 2,
and 4 being changed, then the permuted row becomes (1/x1, 1/x2, x3, 1/x4, x5).

There are as many distinct permutations as there are subsets of the n
columns, therefore there are 2n permutations in the direct comparison case.

6 Missing Values

PaGE does not impute missing values, instead it leaves them missing. The
reason for this is that imputed missing values can be fairly unreliable when
there are only a few replicates, while when there are many replicates a few
missing values do not impact greatly on the results. Thus there is no great need
to try to impute.

PaGE will consider a row with missing values as having fewer replicates for
that row. Of course if there is less than two values in any condition then that
row must be ignored. The same is true when considering permutations of the
data, a permutation that leads to a group having less than two replicates is
ignored in the permutation distributions.

The program’s behavior with respect to missing values can be controlled by
the user through the “min presence” parameter. This allows the user to choose
the minimum number of values that must be present in the condition in order
to not be ignored. The parameter can be set separately for each group, or one
global setting can be used for all groups. The default value is two replicates per
group.

7 The Statistics

We denote by S any two-class statistic, and think of it as a function which maps
rows of the data matrix r to real numbers. Suppose there is some center point
c such that S > c indicates up-regulation and S < c indicates down-regulation.
The statistics we have in mind are:

3If the data are log transformed, then take the negative instead of the reciprocal.
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• The modified t-statistic

((c1, c2, . . . , cm), (d1, d2, . . . , dn)) −→ µ1 − µ0

α + D
(2)

where µ0 is the mean of (c1, c2, . . . , cm), µ1 is the mean of (d1, d2, . . . , dn),

D =

√
σ2

0(m− 1) + σ2
1(n− 1)

m + n− 2
,

where σ2
0 is the sample variance of (c1, c2, . . . , cm)

1
m− 1

m∑

j=1

(cj − µ0)2,

and σ2
1 is the sample variance of (d1, d2, . . . , dn)

1
n− 1

n∑

j=1

(dj − µ1)2.

In this case the center c equals 0. When α = 0 this is the standard two-
sample t-statistic. As we will see later, results can be extremely sensitive to
the value of α when comparing t-statistics across many genes, particularly
when there are relatively few replicates. Therefore we refer to α as the
t-statistic tuning parameter.4 The effect of this parameter is discussed in
detail in Section 14 below.

• The second statistic is the ratio of the means in the two conditions

((c1, c2, . . . , cm), (d1, d2, . . . , dn)) −→ µ0

µ1

where µ0 is the mean of (c1, c2, . . . , cm) and µ1 is the mean of (d1, d2, . . . , dn).
In this case the center c = 1.

• If n = m and the data are paired, then the geometric mean of the paired
ratios

((c1, c2, . . . , cn), (d1, d2, . . . , dn)) −→ n

√
c1

d1

c2

d2
. . .

cn

dn

The center c = 1.

These don’t all make sense in all cases. For example if there are negative
intensities in the unlogged data then the ratio statistics is not very sensible.
If m 6= n then the geometric mean of the paired ratios is not well defined.

We could apply the t-statistic to the unlogged, or to the logged, data, or
to any transformation of the data. Therefore, even with fixed α, the t-statistic

4This is the same as the so-called t-statistic “fudge factor” introduced by Tusher et al.
(2001).
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is not one statistic but a family of statistics. This will be discussed further in
Section 15.

et M be the data matrix, and let Mp be the data matrix whose rows have
been permuted by the permutation p. Let g be the number of rows of M . We
think of the statistic S as a mapping which takes M , or Mp, to a vector of real
numbers of length g. We denote this mapping also by S. We denote the value
of S on row r by Sr.

8 The FDR

We will focus on upregulation in condition 1 versus condition 0. The case of
downregulation follows by switching the roles of conditions 0 and 1. We will
also assume that larger values of S are more significant. This is the case for
all of the statistics above. The case where smaller values are more significant
follows by switching the direction of the inequalities.

For any row r we take the null hypothesis H0
r to be that the distribution

for row r in condition 0 is identical to the distribution for row r in condition 1.
Suppose that for g0 of the rows the null hypothesis is true. Let g1 = g− g0. For
each real number k > c, let Gk be the set of rows r of M such that Sr ≥ k. Gk

is the set of predictions if we use k as the “cutoff” for the statistic. Let Rk be
the size of Gk. Let Vk be the number of rows in Gk for which the null hypothesis
is true.

With this set-up, we will have made Vk false predictions out of Rk total
predictions. Provided Rk > 0, we call the ratio Vk/Rk the false discovery
proportion of this set of predictions.

Our approach towards differential expression analysis of microarrays is to
control this proportion in some way. This is the common approach to the
multiple testing problem in microarray differential expression analysis, so we
will not argue its merits here. There are many ways to define what it means to
control this proportion, and our FDR definition differs from the original one of
Benjamini and Hochberg (1995), as well as that of Storey (2002) and Storey and
Tibshirani (2003). We define the false discovery rate (FDR) of the procedure
itself, as {

E(Vk)/Rk, Rk > 0
0, Rk = 0.

(3)

In contrast the original definition of Benjamini and Hochberg is
{

E(Vk/Rk), Rk > 0
0, Rk = 0.

(4)

The advantage of (4) is that it takes into account the correlation between
Vk and Rk. However the advantage of (3) is that it can be more realistically
estimated via permutation distributions. 5

5Indeed to estimate (4) one needs to know something about the random properties of V/R.
If we permute the columns of the data matrix (1), we can obtain some kind of approximation
to an observation of V under the complete null hypothesis, but this tells us nothing about V/R
under the true distribution of the data. The bootstrap distribution obtained by sampling with
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The goal is to find a value of k so that (3) is acceptablly low. Sometimes one
is willing to tolerate a relatively high FDR such as .5, other times a low FDR
such as .05 is desired. PaGE searches for the least conservative (i.e. smallest)
value of the cutoff k for which this FDR can be achieved, by estimating the
FDR over the range of values of k and choosing the smallest k which achieves
the desired FDR. The range of values of k goes from the center c to the observed
maximum of the statistic over the unpermuted data. PaGE, by default, divides
this range into 1,000 equally spaced values of k, called “bins”.

9 FDR Estimation

For each permutation p of the data matrix we obtain a value V p
k which equals

the number of rows whose permutation statistic Srp ≥ k. Thus we obtain a
permutation distribution Dk of Vk under the complete null hypothesis (that is,
when all null hypotheses are true). Note that the distribution Dk depends on
the joint distribution of the Sr, 1 ≤ r ≤ g, which is maintained by permuting
the data matrix in columns.

Let µ̃k be the mean of Dk. There are two problems in using µ̃k as an estimate
of E(Vk). First off, since it is calculated under the complete null hypothesis,
it is at best a measure of how many hypotheses would be falsely rejected if
they were all true. So, assuming that some hypotheses are false, µ̃k would be
an overestimate. Second, unless all hypotheses are true, the false hypotheses
can cause the distribution of Vk to be different from what it would be if we
could consider only the true hypotheses in defining Dk. Since we do not know
which hypotheses are true; we must allow the false hypotheses contribute to the
counts involved in Dk. Typically permutation distributions are used to derive
p-values, for which there is substantial theory, however, here we are interested in
actually estimating E(Vk) from the permutation distribution, and this requires
some justification.6

Regarding the second issue, we argue that use of µ̃k is conservative. Suppose
that null hypotheses r is false. Then for permutations p which switch only one
or a few columns between conditions, the false hypothesis r will tend to have
large values of the statistic Sr, and will therefore tend to contribute to the count
of V p

k more than it would if H0
r were true. Similarly, downregulated genes will

tend to overcontribute to the count V p
k for those permutations which switch

most or all of the columns between the groups. Therefore the estimate µ̃k will
tend to be larger than the true value of E(Vk). The more hypotheses that are
false, the more conservative µ̃k will be.

Turning to the first issue, we assume that µ̃k is an overestimate of E(Vk),
as described above. Therefore

Rk − µ̃k (5)

replacement from the two groups separately, will give us an approximation to the distribution
of R, but again tells us nothing about V/R. To obtain information about V/R most authors
have had to make strong assumptions about the data.

6Note that similar “permutation estimates” are utilized in the SAM theory of Storey and
Tibshirani (2003), however without justification as to why we should expect them to be
reasonable estimates.
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is an underestimate of the number of true positives (the rows in Gk for which
the null hypotheses is false). Therefore g − (Rk − µ̃k) is an overestimate of the
total number of true hypotheses. Originally µ̃k was calculated as an estimate
to Vk assuming all hypotheses are true. If we recalculate assuming there are
g − (Rk − µ̃k) true hypotheses, then we obtain

µ̃k(1) =
µ̃k

g
(g − (Rk − µ̃k)) .

Since g − (Rk − µ̃k) is an overestimate of the number of true hypotheses, µ̃k(1)
is still an overestimate of E(Vk), however it is a better estimate than µ̃k. Using
the same logic, we calculate

µ̃k(2) =
µ̃k(1)

g
(g − (Rk − µ̃k(1))) ,

and in general

µ̃k(i + 1) =
µ̃k(i)

g
(g − (Rk − µ̃k(i))) .

This sequence quickly converges, and PaGE takes µ̃k(6) as its final estimate for
Vk, which we denote by Ṽk.

We take as estimate of the FDR

FDRk = Ṽk/Rk.

It is useful to also define the quantity CONFk = 1 − FDRk. CONFk is as
estimate of the confidence the probability that any gene taken at random from
Gk is a true positive.

We assign confidences not just to the Gk, but to the rows of the data matrix
themselves, by

CONFr = min
k such

that r∈Gk

CONFk,

where r is a row of the data matrix. In this way, we have confidence of at least
γ that a row r with CONFr = γ represents a truly differentially expressed gene.

10 The case of direct comparison and paired de-
signs

In the case of direct comparison data, which consist of a data matrix with n
columns of ratios (possibly log ratios), the statistics are either the one sample
t-statistic or the geometric mean of the ratios. The one sample t-statistic is
applied to the logarithm of the data. If row r is given by ratios (b1, b2, . . . , bn),
let xi = log(bi).7 The statistic is then given by

(x1, x2, . . . , xn) −→ µ

α + σ
(6)

7In the PaGE 5.0 code natural log is used.
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where µ is the mean of (x1, x2, . . . , xn), and σ2 is the sample variance

1
n− 1

n∑

j=1

(xj − µ)2.

As with the two-sample t-statistic, the tuning parameter α is added to the
denominator. This parameter will be discussed further in Section 14 below.

In the case of paired designs, m = n. If the data are logged then paired
differences are formed bi = di − ci using the notation of (1). The data are now
reduced to the case of direct comparison data. If the data are not logged then
paired ratios are formed bi = di/ci.

Using the statistics described above and the one-sample permutations de-
scribed in Section 5, the theory is identical to that described in Section 9, making
the appropriate changes of notation.

11 The special case of unlogged negative inten-
sities

In some cases data can contain negative intensities even before log transforma-
tion. For example with Affymetrix data the MAS 4.0 or earlier algorithms could
produce negative values, as well the Probe Profiler algorithm (Corimbia Inc.)
produces negative values. For some analysis it does not matter, for example
when applying the t-statistic to the unlogged data there is no issue with there
being negative intensities. However, in any case where it does matter (for ex-
ample when using one of the ratio statistics), PaGE will alert the user that they
are trying to apply a method that does not make sense when there are negative
intensities. The analysis can continue if the user is willing to shift all intensities
by some positive quantity so that the resulting data no longer contain negatives.
When PaGE alerts the user it will suggest a moderate shift to perform in order
to continue. Note that the results can depend on this transformation, too large
a shift can decrease power dramatically, so shifting should be done with some
attention to this fact. But in some cases there is no other way to perform an
analysis, so this option can be useful.

12 Levels

Now that each gene has been assigned a confidence, they are next assigned “lev-
els”. The user chooses a confidence γ. A cutoff C for the statistic is determined
by setting it to the minimum k for which CONFk > γ, if such a C exists. The
set of all rows r such that Sr > C then gives the least conservative set of pre-
dictions which achieve a confidence of at least γ. Depending on the data, there
may not be any such value of C that achieves confidence γ, in which case C is
set to be ∞.

Depending on whether the statistic is on an additive scale (such as the t
statistic), or on a multiplicative scale (such as the geometric mean), the levels
are created differently. Assume first the additive case. In this case if the statistic
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Sr is less than C, then row r is given level zero. If C ≤ Sr < 2C, then it is
given level one. If 2C ≤ Sr < 3C then it is given level two. In general if

nC ≤ Sr < (n + 1)C

then it is given level n.
Higher levels are rows with higher confidence than lower levels, however, the

confidence associated with each row still only refers to the confidence of being
differentially expressed, and not the confidence of being in any particular level.
Levels are used for display purposes, particularly to generate patterns across
several conditions, as discussed below.

If the statistic is on a multiplicative scale, then row r is given level n if

Cn ≤ Sr < Cn+1.

The parameter γ is referred to as the level confidence. As one raises the
level confidence, fewer levels are produced and the genes assigned to the levels
have higher confidence. One can raise or lower the level confidence as desired
to find the best granularity for their needs. One will usually want to adjust the
level confidence to a moderate level, and what that level is will depend on the
dataset. After the gene confidences have been calculated, PaGE presents the
user with a table which gives a summary breakdown of how many genes were
found, but up- and down-regulated, for a range of confidences. The user can
then choose one that suits their needs. See Section 15 for more on this.

13 Multiple conditions and patterns

PaGE can be used just as a differential expression analysis tool comparing two
conditions. But another very useful feature of PaGE is its ability to compare
multiple conditions simultaneously. For example one might have a time or devel-
opmental series, or a series of risk classes for tumor types, etc. Data often come
in this multiclass form. We assume the conditions are labelled 0, 1, . . . , M .
PaGE compares each condition 1, 2, . . . , M to condition 0, generating patterns
of length M from the levels as described in the previous section. These patterns
aid in locating general behavior of genes across the conditions. For example, if
the conditions represent a time-series, then a pattern such as (0, 1, 3, 3, 7) would
indicate a gene whose expression was steadily rising. A pattern (0, 0,−3,−3,−3)
could be a gene which has just shut off in the third condition and remained off.
Condition 0 is referred to as the reference condition. (Note: don’t confuse the
reference condition with the reference channel of a reference design study.) Po-
sition i in the pattern represents a differential expression call between condition
i and condition 0. We have found that organizing the data into integer based
patterns allows for convenient perusal of the results.

Level confidences can be set separately for each position, or one global level
confidence can be used. As the level confidence is raised, fewer patterns are
produced, as it is lowered more patterns are produced.

Examples of multi-class analyses are given in the HTML documentation.
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14 The t-statistic tuning parameter

When using the t-statistic, the power of the method outlined above can be
dramatically effected by the value of the tuning parameter α in (2) and (6).
This is particularly true when there are only a few replicates per condition.
The reason for this is that, since there are so many genes, there are many null
genes whose variances in both groups are small just by chance. The t-statistics
blow up for those null genes with vanishingly small variance, and since it is not
those genes we want to find, and the algorithm is forced to be more conservative
in its predictions to avoid picking them up. On the other hand, when α is too
large, then for the non-null genes, the t-statistic’s denominator dominates more
for those genes with small mean difference and small variance, than those with
large mean difference and large variance. The former set gets more and more
lost in the noise as α goes up. As a result differentially expressed genes with
small mean difference µ1 − µ0 and small variances in both groups tend to have
larger confidence with smaller α, while genes with a high mean difference and
large variances have larger confidence with larger α. Therefore, what value to
set α to depends on the nature of the differentially expressed genes as well as
the non-differentially expressed genes.

There is no obvious formula that can be applied to the data matrix to deter-
mine the value of α which maximizes the power. However, since the confidence
is the same regardless of α, a power criteria to determine α would be desirable.
In other words we want the value of α which maximizes the power. Maximum
power generally occurs for a moderate value of α. See for example the data in
Table 1, Table 2, and Table 3. PaGE therefore tries a range of values of α, from
very small to very large, and then chooses the one which gives the greatest num-
ber of results. This is the default value of α. Other values of α can, however,
find genes that the default value misses. Therefore it is important that the user
have control over this parameter.

To illustrate this we generated several simulated datasets. First is a dataset
with 5000 “genes”, 300 of which are differentially expressed. Differentially ex-
pressed genes have varying mean differences. The first 25 rows had mean dif-
ference 1.2 between the two conditions. The next 25 rows had mean difference
1.3. The next had 1.4, etc. Specifically the 12 blocks of 25 has mean differences
1.2, 1.3, 1.4, 1.5, 2, 2.2, 2.4, 2.6, 4, 4.3, 4.6, 4.9, respectively. These are rows
numbered 0-299. For each row, the intensities in each condition are given by
beta distributions. The variances of those beta distributions increases over each
block of 25 from very low to very high. So row 0 has µ1 − µ0 = 1.2 and very
low variances, row 1 has µ1 − µ0 = 1.2 but slightly higher variances, up to rwo
24 which has µ1 − µ0 = 1.2 and high variances. Row 25 then has µ1 − µ0 = 1.3
with low variances, row 26 has µ1−µ0 = 1.3 with slightly higher variances. Etc.
The null genes were generated by 4700 randomly chosen beta distributions with
randomly chosen parameters. The full dataset can be downloaded here:

http://www.cbil.upenn.edu/PaGE/doc/files/testdata 300diff of 5000.txt

Using the first three columns of each condition we ran PaGE with 13 different
values of α and also ran SAM. The web page
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http://www.cbil.upenn.edu/PaGE/doc/files/3reps conf.8 example.html

has the results for the genes found at .8 confidence or higher. Columns represent
different runs. The final column gives the SAM results. In the top rows the
actual values of R − V (the number of true positives), R (the total number of
predictions), and the confidence are given for each run. An “X” means that that
gene was found in that run (the 300 differentially expressed genes are listed,
numbered 0-299).

SAM produces results very close to the setting α = .1. The power is max-
imized around α = 2.5. At this value 166 genes are reported by PaGE, as
opposed to SAM’s 145. But the overlap between the two sets is only 128 genes.
SAM finds 17 that PaGE does not and PaGE finds 38 that SAM does not.

It can also be seen from this example that lower values of α pick up the
genes with low fold change and low variance, while higher values picked up the
genes with high fold change and high variance.

If the non-differentially expressed genes tend to be bimodal, with small vari-
ance in each mode, then with a small α the null genes will add a lot of noise
to the system. At the extreme, if a gene is bimodal with values 1 or 2, each
with 50% probability, sampling 3 replicates per condition, and we choose α = 0,
then one time in 32 the t-statistic will be ∞. Raising α decreases these extreme
values of the t-statistic so that genes with significant differences in means and
moderate variance can stand out.

The SAM (Tusher et al. (2001)) algorithm uses an approach which depends
on a smoothing criteria to determine a value of α to use. The rationale is that the
t-statistic distributions should be identical for all (null) genes, so they impose
a unifority criteria for the t-statistics to determine α. They do not present
theory however which connects their crietria with increased power, and in fact
this method can go severely wrong with regards to the power of the results.
Perhaps the problem is that we do not want the non-null genes to have the
same distribution as the null genes, however their smoothing criteria is applied
to all genes.

To demonstrate this we generated a simulated data set of 1000 genes, with
100 differentially expressed, and with the null genes each having a bimodal
distribution. The data set can be obtained here:

http://www.cbil.upenn.edu/PaGE/doc/files/bimodalnulltest.txt

The q-values are equal to one minus the confidence. The lowest q-values pro-
duced by SAM on this data set are .5 (14 genes). The full set of q-values can
be obtained here:

http://www.cbil.upenn.edu/PaGE/doc/files/bimodalnulltest SAM qvals.txt

In contrast, PaGE reports 17 genes at confidence greater than .8, all but one of
which are true positives. The complete list of PaGE confidence values can be
obtained here:

http://www.cbil.upenn.edu/PaGE/doc/files/bimodalnulltest PAGE conf.txt

Therefore for this data set SAM produces very poor results.
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α num predicted

.01 0
.1 9

.18 12
.2 15
.3 15

.32 11

.33 10

.34 10

.35 0
.4 0

Table 1: The effect of the t-statistic tuning parameter. Three replicates, one-
class simulated data 1000 rows, with 50 differentially expressed. Confidence
= .5. Mean of σ is 0.227.

This example also illustrates, again, how different genes can be found with
different values of α, so there is not necessarily a single value that encompasses
all types of differential expression.

In the example above on the page

http://www.cbil.upenn.edu/PaGE/doc/files/3reps conf.8 example.html

the confidence is, as expected, close to the desired .8, regardless of the choice
of α. One might therefore consider taking the union of the results for several
values of α in order to increase the power of the results. The problem with
such an approach is that the sets of genes tend to overlap more on the true
positives than on the false positives. Therefore taking the union of the sets
tends to decrease the confidence of the results. For example taking the union
of α = .0001, 3.5, and 20 in the above example increases the number of true
positives to 175, but decreases the confidence to 0.738, which might be more
confidence than it is worth giving up to find the extra 15 genes.

Therefore, it depends on the purposes of the investigator how they will want
to deal with this issue. Often the moderate default value will be sufficient.
When there are only a small number of differentially expressed genes, then one
might want to adjust α to try to find them.

15 The choice of level confidence, statistic, trans-
formation, and other parameter settings

Finding an appropriate level confidence

The main parameter that the user will want to adjust is the level confidence.
Every dataset is particular, so it is difficult to guess ahead of time what will be
the best level confidence. Therefore PaGE allows you to set this parameter after
the confidences have been calculated and the program displays a summary of
the number of genes found over a range of confidences. If one has very few genes
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α num up num down

.001 52 3
.01 85 16
.05 137 34
.1 205 81

.15 223 138
.2 232 149
.3 253 158
.4 221 163
.5 198 180

.75 140 181
1 109 166
2 53 119

Table 2: The effect of the t-statistic tuning parameter. Six replicates, two-class
mouse pancreas data. Confidence = .8. Mean of D is 0.157.

α num up num down

.001 100 5
.01 98 18
.02 106 3

.025 239 143
.03 215 129
.05 278 256
.07 243 228
.1 231 249
.2 207 274
.3 157 167

Table 3: The effect of the t-statistic tuning parameter. Eight replicates, one-
class mouse pig heart valve data. Confidence = .8. Mean of σ is 0.144.
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differentially expressed, or if the data are very noisy, then a relatively low level
confidence might be necessary to find them. Keep in mind that an FDR is very
different from a p-value, so that while a p-value of .5 is practically useless, an
FDR of .5 might be very useful. A set of predictions with FDR .5 has one out
of every two genes being true positives. If one started with an array where only
one out of every 100 genes were true positives, then this represents a dramatic
enrichment for the true positives. Therefore it is not unreasonable to lower the
level confidence as low as .5.

Conversely, if there is a large number of differentially expressed genes, on
the order of thousands, then the user will generally want to set the the level
confidence higher to see just the most confident predictions. One in this case
might wish to raise the level confidence as high as .95, or even .99 in extreme
cases.

Using the ratio of means versus the t-statistic

For most datasets the user will probably want to start with the t-statistic option.
If the t-statistic does not return many results, one should try adjusting α or using
the other statistics. Even if there are many genes found, however, different
statistics can pick up different kinds of differential expression. To illustrate this
we generated a simulated dataset with two conditions, 100 “genes,” and four
replicates per condition. Two of the genes are differentially expressed. The 98
non-differentially expressed genes have moderate intensity: (beta distribution
with mean 50, spread 35). Gene 0 is differentially expressed in the low intensity
range (means of approximately 4 and 9 in the two conditions respectively). Gene
1 is differentially expressed in the high intensity range (means of approximately
400 and 450 in the two conditions respectively). Data available at

http://www.cbil.upenn.edu/PaGE/doc/files/mean vs tstat testdata.txt

Table 4 shows the results using the ratio of means statistic (left) and the t-
statistic (right). Using the ratio of means the low intensity differentially ex-
pressed gene (gene 0) is much more significant than the high intensity differen-
tially expressed gene (gene 1). Conversely, using the t-statistic the high intensity
differentially expressed gene is much more significant than the low intensity dif-
ferentially expressed gene.

Ultimately there is no “best” statistic. A statistic can often be optimized
for a single test, and there is substantial statistical theory about how to do this.
But a statistic cannot typically be optimized for thousands of genes at once.
Unfortunately there are no push-button solutions to this problem, each dataset
is particular and must be treated as a special case, but by starting with the
defaults the user can usually quickly hone in on reasonable parameter settings
to suit their needs.

Using logged versus unlogged data

The caveats of the previous section about relying on one statistic apply also to
the different possible data transformations one can perform. Perhaps the most
common is the log transformation. PaGE offers the option of performing this
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ID Conf. ratio of means Conf. t-statistic

0 0.943 0.344
1 0.343 0.985
max others 0.424 0.367

Table 4: Comparison of results using the ratio of means statistic versus the
t-statistic. Data consists of a simulated dataset of 100 genes. Gene with ID 0 is
low intensity differentially expressed. Genes with ID 1 is high intensity differ-
entially expressed. Genes with ID 2-99 are medium intensity non-differentially
expressed. The bottom row shows the maximum confidence achieved by all
other genes. Each method picks up one of the two differentially expressed genes
at high confidence.

ID Conf. logged Conf. unlogged

0 0.673 0.344
1 0.343 0.985
max others 0.376 0.367

Table 5: Comparison of results using the logged versus unlogged data with the
t-statistic. Same data as in Table 4. The bottom row shows the maximum
confidence achieved by all other genes. Using the unlogged data was much
better at finding gene 1, while using the logged data performed better on Gene
0 and completely lost gene 1 in the noise.

transformation when one is using the t-statistic. Using the same test datasets
as above, Table 5 shows what happens to the confidence of gene 1 when the
data are logged versus unlogged. The confidence of Gene 0 goes down while the
confidence of Gene 1 goes up.

Thus one cannot trust either approach to perform better for all genes simul-
taneously. This happened because applying logs to the data, and then applying
the t-statistic, which focuses on differences, is similar to first taking ratios, and
then taking logs. For gene 1 in the above example, whose intensities are in the
high range of the spectrum, it has a relatively small ratio, compared to the null
genes whose intensities are in a lower range of the spectrum.

So when looking for a sparse set of genes among many, one may have to try
several variations on the options. When there are many genes differentially ex-
pressed, then one will probably have their hands full regardless of what method
they use.

16 PaGE output

PaGE output is designed to simplify interpretation of results. PaGE generates
output in text and HTML format. At the top is a report of all of the parameter
settings used in that particular run. The cutoff is reported which achieves the
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desired level confidence. For up-regulation this is called the upper cutratio and
for down-regulation is is called the lower cutratio. If the t-statistic is used, then
the t-statistic tuning parameter is reported. The levels, or patterns in the case
of multiclass data, are then given.

The reest of the report contains the gene lists, which are organized into
levels, or patterns. Levels, or patterns, are listed in dictionary type ordering.
Each pattern is followed by the list of genes whose expression levels follow
that pattern. The row identifier may be given as a link to further information
regarding that array element, such as a link to GenBank. Following the gene
identifier is the list of confidences for each position in the pattern. Genes are
sorted by descending confidence within a pattern. When confidences are equal
they are sorted by decreasing value of the statistic. The next column gives the
averages of the intensities for that ID in the respective groups. Note that if a
paired analysis is done, this number might be misleading, as it is not the paired
mean being reported. These means are just given just as an aid in perusing
the data. The next column gives the value of the statistic on the unpermuted
data. The next column gives a name or description, if the user has provided
a file which maps IDs to names or desriptions. On the far right of the row is
a link that allows the user to eyeball the full set of intensities for that row of
data. The means are also given. If a pattern has too many genes in it, it will
be written to a separate page and a link will be included in the main page.
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